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Spatial modeling of Bering Sea walleye pollock with integrated
age-structured assessment models in a changing environment
Peter-John F. Hulson, Terrance J. Quinn II, Dana H. Hanselman, and James N. Ianelli

Abstract: Climate change may affect the spatial distribution of fish populations in ways that would affect the accuracy of
spatially aggregated age-structured assessment models. To evaluate such scenarios, spatially aggregated models were compared
with spatially explicit models using simulations. These scenarios were based on hypothetical climate-driven distribution shifts
and reductions in mean recruitment of walleye pollock (Gadus chalcogrammus) in the eastern Bering Sea. Results indicate that
biomass estimates were reasonably accurate for both types of estimation models and precision improved with the inclusion of
tagging data. Bias in some aggregated model scenarios could be attributed to unaccounted-for process errors in annual fishing
mortality rates and was reduced when estimating effective sample size or time-varying selectivity. Spatially explicit models that
allow estimation of variability in movement and ontogenetic parameters (specified as a randomwalk process) were shown to be
feasible, whereas models that misspecified ontogenetic movement and climate change effects resulted in biased biomass and
movement parameter estimates. These results illustrate that more complex models may characterize processes better but may
be less robust for management advice.

Résumé : L’effet des changements climatiques sur la répartition spatiale de populations de poissons peut avoir une incidence sur
l’exactitude des modèles d’évaluation des stocks structurés par âge spatialement agrégés. Pour évaluer de tels scénarios, des
modèles spatialement agrégés ont été comparés à desmodèles spatialement explicites à l’aide de simulations. Ces scénarios sont
basés sur des phénomènes hypothétiques d’origine climatique de modification de la répartition et de diminution du recrute-
ment moyen des goberges de l’Alaska (Gadus chalcogrammus) dans la mer de Behring orientale. Les résultats indiquent une
exactitude raisonnable des estimations de la biomasse issues des deux types de modèles d’estimation et une augmentation de la
précision associée à l’intégration de données demarquage. Des biais associés à certains scénarios demodèle agrégé peuvent être
attribués à des erreurs de traitement dans les taux annuels de mortalité par pêche n’ayant pas été prises en considération. Ces
biais ont pu être réduits pour l’estimation de la taille d’échantillon effective et de la sélectivité variable dans le temps. La
faisabilité de modèles spatialement explicites qui permettent d’estimer la variabilité des déplacements et de paramètres
ontogénétiques (définis selon un processus de cheminement aléatoire) est également démontrée, alors que des modèles carac-
térisés par une définition erronée des déplacements ontogénétiques et des effets des changements climatiques ont donné des
estimations biaisées de la biomasse et des paramètres de déplacement. Ces résultats illustrent le fait que, si des modèles plus
complexes peuvent fournir une meilleure caractérisation des processus, ces modèles peuvent toutefois s’avérer moins robustes
pour ce qui est d’éclairer la gestion des stocks. [Traduit par la Rédaction]

Introduction
Spatial modeling of fish stocks for the purposes of fishery man-

agement is relatively uncommon, with notable exceptions includ-
ing tunas (e.g., Hampton and Fournier 2001), school shark (Punt
et al. 2000), and rock lobster (McGarvey et al. 2010). With spatially
disaggregated datasets and mark–recapture information, spa-
tially explicit models can be developed that estimate movement
between regions (Goethel et al. 2011). The primary limitation to
implement spatial models is the lack of resolution in the available
spatially disaggregated datasets. Consequently, stock assessment
scientists will construct models that typically cover broad geo-
graphic scales and implicitly assume that spatial heterogeneity of
fish populations roughly coincides with fishery patterns.

Spatially explicit accounting for fish populations is also an im-
portant step in moving towards ecosystem-based fisheries man-
agement (Quinn andCollie 2005;Marasco et al. 2007; Goethel et al.
2011). To make ecosystem-based fisheries management opera-

tional, a spatially explicit model allows for interactions among
aquatic species at finer spatial scales, as modeling at broad geo-
graphic scales maymiss important population processes (Härkönen
and Harding 2001). Further, spatially explicit stock assessment
models contribute to understanding the interactions between
fish and environmental influences within geographically distinct
habitats (Mueter et al. 2006). For these reasons, the demand for
advances in implementing spatial components within stock as-
sessment models has increased.

Research conducted by the Intergovernmental Panel on
Climate Change (IPCC) has found that global mean temperatures
are rising (Intergovernmental Panel on Climate Change 2007),
which could have an influence on the spatial distribution of fish
species evaluated with fisheries stock assessment models (Mueter
and Litzow 2008). Thus, the potential effects of climate change on
the spatial distribution of fish populations need to be identified
(Beamish et al. 2004). A primary effect of climate on the distribution
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of fish in the Northern Hemisphere is hypothesized tomanifest as
a northward shift (Perry et al. 2005; Cheung et al. 2009). A number
of studies have examined the ecological implications of climate
change through simulation (Hashioka and Yamanaka 2007;
Munday et al. 2008; Ianelli et al. 2011a), but the performance of
fisheries stock assessment models when applied to fish popula-
tions influenced by climate change has not been investigated.
Also, the accuracy and precision of spatially aggregated stock as-
sessment models used to manage fisheries should be evaluated
when considering climate change.

A spatially explicit stock assessment model from Miller et al.
(2008) and Hulson et al. (2011) for eastern Bering Sea (EBS) walleye
pollock (Gadus chalcogrammus, hereafter referred to as “pollock”) is
used in this study, as it provides an excellent example of a fish
species that could be affected by climate change (Overpeck et al.
1997). The spatially explicit model for EBS pollock includes two re-
gions, the northwest and southeast, divided by the 170°Wmeridian,
and two commercial fishery seasons (A: winter–spring season;
B: summer–fall season; Fig. 1; Miller et al. 2008). In the spatially
explicit age-structured assessment (ASA) model, movement be-
tween regions was assumed to occur after each season between
the spawning and feeding grounds. Further details, including pa-
rameters estimated and population dynamics equations in the
spatially explicit ASA model, can be found in Miller et al. (2008)

and Hulson et al. (2011). The latter group of authors performed
simulation testing without climate change effects and found that
the spatially explicit model was accurate and precise, especially
when mark–recapture data were available.

Owing to potential warming in the southern latitudes, a north-
ward latitudinal shift would result in an increase in EBS pollock
abundance in the northwest region and a decrease in the south-
east region (e.g., Perry et al. 2005). In the EBS, pollock distribution
and, by inference, movement have been shown to be correlated
with temperature (Kotwicki et al. 2005). Further, EBS pollock re-
cruitment has been found to be inversely related to temperature,
so recruitment could decrease with increased temperatures in the
EBS, as forecasted by the IPCC climate models (Mueter et al. 2011).
In this study we tested the effects of a hypothetical northward
shift and a decrease in mean recruitment in the EBS pollock pop-
ulation resulting from increasing temperatures due to climate
change. Through simulation, our goal was to investigate the accu-
racy and precision of spatially aggregated models compared with
spatially explicit models used to assess a population whose spatial
distribution is affected by climate change.

Materials and methods
To compare between spatially aggregated and spatially explicit

models under different movement and recruitment scenarios

Fig. 1. Map showing the northwest and southeast regions of the eastern Bering Sea considered in the spatial modeling of walleye pollock.
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that were impacted by climate change, we followed a four-step
process in this simulation analysis. In the first step, spatially ex-
plicit operating model cases were constructed with “known” pop-
ulation structure (Table 1). Within the operating model, different
types of movement were considered, including no movement, ran-
dom movement, and climate change influences on movement.
Hypothetical effects of climate change on movement and recruit-
mentwere considered by shifting the population of EBS pollock to
the north and reducing the mean recruitment (e.g., Cheung et al.
2009; Mueter et al. 2011).

In the second step, datasets that can be integrated into ASA
models (e.g., catch, population index, age composition, and tag
recoveries) were taken from the operating model cases and error
was generated. The simulated datasets were generated assuming
statistical distributions about observations (e.g., sampling error)
and processes (e.g., recruitment variability). In the third step, es-
timation models were constructed as either spatially explicit or
spatially aggregated forms of ASA models. Different estimation
model scenarios were then applied to the generated datasets from
the first and second steps (Table 1). The spatially explicit form
estimated movement between regions, while the spatially aggre-
gated form combined the regional data and modeled the entire
population in the EBS. In the fourth and final step, estimation
model performance was evaluated through bias and uncertainty
compared with the “known” population quantities from the op-
erating model cases. In the following sections, further details of
each of the four steps taken in this study are provided. Additional
details, including further description of operating and estimation
model structures, parameters used in the operating model, and
climate change influences onmovement and recruitment are pro-
vided in the online supplementary material1.

Operating model
The operating model used in the first step of this simulation

analysis was based on a two-region and two-season spatially ex-
plicit ASA model for EBS pollock (Miller et al. 2008). The spatially
explicit ASAmodel used in Miller et al. (2008) was fit to regionally
disaggregated datasets and estimated parameters for regional re-
cruitment, regional initial abundance, regional and seasonal fish-
ing mortality, fishery and survey selectivity, survey catchability,
andmovement parameters. The estimated parameters andmodel
structure from Miller et al. (2008) were used in this study to con-
struct the operating model.

In the operatingmodel there were two periods ofmovement. In
the first, fish moved from the spawning to summer feeding
grounds after the A season. After the B season, fish moved from
the summer feeding grounds back to the spawning grounds in the
second period of movement. Movement of EBS pollock has been
found to be related to age (Buckley et al. 2001), and this relation-
ship was accounted for in several cases of the spatially explicit
operating model. In the cases that considered ontogenetic move-
ment, the proportion of fish that remained in the northwest re-
gion was specified as a decreasing function of age for both the A
and B fishing seasons. The proportion of fish specified to remain
in the southeast region after the A and B seasons was constant
across ages based on available knowledge.

In the operatingmodel, as inMiller et al. (2008) andHulson et al.
(2011), the probability that a fish stayed in the same region (R¡RPS)
was estimated as the inverse-logit function

(1) R¡RPS �
1

e��R,S � 1

where �R,S are the logit-transformed region (R) and fishing sea-
son (S) specific movement parameters. Ontogenetic movement in
the northwest region was constructed in the operatingmodel as a
linear function of age. The probability that fish stayed in the
northwest region for ages 4–10+ was given by

(2) NW¡NWPa�1,S � NW¡NWPa,S
NWQ S

where NWQ S is a proportion that decreased the retention of fish in
the northwest (NW) region by age (a) in season S. Similar to the
movement probabilities, NWQ S was estimated as the inverse-logit
function:

(3) NWQ S �
1

e��
NW,S � 1

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2013-0020.

Table 1. Notation and description of the operating model cases and
estimation model scenarios evaluated.

Notation Description

Operating model cases
O0 No movement between regions, time- and season-

dependent F equal among regions (averaged across
regions from Miller et al. (2008) and Hulson et al.
(2011))

O1 Random movement among regions, time-, season-, and
region-dependent F same as that in Miller et al.
(2008) and Hulson et al. (2011)

O2 Movement and F same as that in Miller et al. (2008)
and Hulson et al. (2011); no climate change influence

O3 Movement and F same as that in Miller et al. (2008)
and Hulson et al. (2011); moderate climate change
over final 15 years

O4 Movement and F same as that in Miller et al. (2008)
and Hulson et al. (2011); extreme climate change
over final 15 years

Estimation model scenarios
Spatially aggregated ASA model
A1 Logistic time-invariant fishery selectivity, multinomial

age composition likelihood, no tagging data
A2 Logistic time-invariant fishery selectivity, Dirichlet age

composition likelihood, no tagging data
A3a Nonparametric time-varying selectivity, multinomial

age composition likelihood, no tagging data
A3b Nonparametric time-varying selectivity, multinomial

age composition likelihood, include tagging data

Spatially explicit ASA model
E0a Ontogenetic and climate change parameters and

functional form known, no tagging data
E0b Ontogenetic and climate change parameters and

functional form known, tagging data included
E1 Ontogenetic parameters misspecified, climate change

parameters and functional form known, tagging
data included

E2 Climate change parameters misspecified, ontogenetic
parameters and functional form known, tagging
data included

E3 Climate change and ontogenetic parameters
estimated, functional form known, tagging data
included

E4 Climate change and ontogenetic parameters estimated
with random walk, functional form unknown,
tagging data included

1404 Can. J. Fish. Aquat. Sci. Vol. 70, 2013
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where �NW,S is the logit-transformed ontogenetic parameter for
the northwest region in season S.

Recruitment in the operatingmodel was defined as the number
of age-3 fish (in millions) and was parameterized as in Miller et al.
(2008) and Hulson et al. (2011). Region-specific recruitment for
age-3 was estimated with a mean recruitment parameter (N3), a
scalar allocating the fraction of recruitment between regions (�),
and annual deviations in recruitment (�y

R). Recruitment for the
northwest and southeast regions was given by

(4) NWN3,y � �1 � �� × N3 × e�y
NW

SEN3,y � � × N3 × e�y
SE

where NWN3,y is recruitment in the northwest region, and SEN3,y is
recruitment in the southeast region.

Operating model cases were configured to evaluate spatially
aggregated and spatially explicit model performance by includ-
ing varying degrees of movement and mean recruitment,
which in some cases was affected by climate change (Table 1).
Movement in the operating model cases included no move-
ment, random movement, and movement following Miller
et al. (2008). Further operating model cases were considered in
which climate change effects on movement resulted in a shift
in the distribution of pollock in the EBS to the northwest re-
gion. Climate change effects on recruitment involved a de-
crease in the overall mean recruitment.

Operating model case O0 was constructed as a spatially static
population with nomovement between regions (i.e., the probabil-
ity of staying in region R was set to 1), and the fully recruited
annual fishing mortalities within seasons A and B were equal
across regions (set at the mean annual fishing mortality between
the northwest and southeast regions). Operating model O1 was
constructed with randommovement between regions across ages
and years (generatedwith the uniformdistribution, illustrated for
the probability of staying in the northwest region after the A sea-
son in the online supplementary material) and fully recruited
annual fishing mortalities that were unequal across regions, as in
Miller et al. (2008) and Hulson et al. (2011). Operating model
case O2 was the same as used in Miller et al. (2008) and Hulson
et al. (2011), for which the parameter estimates and model struc-
ture are provided in the supplementary material section. Operat-
ing model cases O3 and O4 were constructed to evaluate climate
change influences on movement and mean recruitment. The pe-
riod over which climate change occurred was specified as occur-
ring for the final 15 years of the operating model.

We are unaware of any literature that provides functional
relationships between climate change and movement parame-
ters in fish populations. The literature that does exist on the
relationship between movement and climate change (i.e., Perry
et al. 2005; Cheung et al. 2009) hypothesizes that a northward
shift of distribution to suitable habitat could occur, but these
studies fail to provide any functional relationships. For simplic-
ity, time-dependent changes in movement parameters within
the operating model were constructed with linear functions.
These functions were applied to the logit-transformed move-
ment parameters to be consistent with the models in Miller
et al. (2008), who also used the logit transformation.

The shift in the EBS pollock distribution to the northwest
region was produced in the operating model through a linear
function of the logit-transformed movement parameters given
by

(5) �R,S,y�1 � �R,S,y × ��

where �� is the climate change parameter for movement, and
�R,S are the logit-transformed region (R) and fishing season (S)

specific movement parameters used to estimate the probability
that fish stayed in the same region (R¡RPS; eq. 1). Like the move-
ment parameters, logit-transformed ontogenetic age-dependent
movement was also specified as a function of �� to give increased
retention in the northwest region with increasing age by

(6) �NW,S,y�1 � �NW,S,y × ��

where �NW,S is the logit-transformed ontogenetic parameter for
the northwest region in season S to estimate the proportion that
decreased the retention of fish in the northwest region by age
(NWQS; eq. 3).

To reflect possible climate impacts on the distribution of re-
gional biomass for the climate change cases, �� was set at 1.07 in
operating model case O3 and 1.2 in operating model case O4. The
climate change parameter applied to the logit-transformedmove-
ment and ontogenetic parameters thus increased retention in the
northwest region over time and with age. An illustration of how
the climate change parameter �� affected movement over time
and age for operating model cases O2–O3 is shown in the online
supplementary material for the probability of staying in the
northwest region after the B season (NW¡NWPa,y,B).

Mueter et al. (2011) found that with increased temperatures in
the EBS, mean pollock recruitment decreased. Thus, with poten-
tial climate change effects that increase the temperature of the
EBS in operating model cases O3 and O4, we also decreased mean
recruitment in these cases. Similar to the linear function for the
movement parameters, mean recruitment was decreased in the
operating model with a linear function applied to the log-
transformed mean recruitment parameter (ln N3) given by

(7) ln N3,y�1 � ln N3,y × �N3

where �N3
is the climate change parameter applied to the log-

transformed mean recruitment parameter.
To produce a decrease in mean recruitment due to warming

temperatures in operatingmodel cases O3 and O4, the parameter
�N3

was selected so that the untransformed mean total recruit-
ment decreased. Mueter et al. (2011) found that mean recruitment
under climate change could decrease by 1% per year. In operating
model case O3, �N3

was set at 0.996, which resulted in a 7.5%
decrease in mean recruitment over the final 15 years of the
operating model compared with the case in which there was no
climate change effect on movement or recruitment (i.e., half of
the value that resulted from Mueter et al. 2011). In operating
model case O4, �N3

was set at 0.99, resulting in a 15% decrease in
mean recruitment over the final 15 years of the operating model,
which follows the predictions of Mueter et al. (2011). Annual devi-
ations in recruitment were held constant between operatingmod-
els to avoid spurious trends in mean recruitment beyond that
driven by climate change. The total, northwest, and southeast
recruitment across the time series of the operating model for
cases O0–O4 and the mean recruitment across the final 15 years
are shown in the online supplementary material.

Data generation
In the second step of the simulation analysis, error was gener-

ated in datasets drawn from the operating model cases. The data-
sets that were generated included catch biomass (regional,
seasonal, and total), population abundance indices (from surveys),
age composition (both for catch and surveys), and tag recovery
data. The time series for each of the datasets followed from the
spatially explicit model used in Miller et al. (2008). Datasets used
in the original spatially explicit ASA model from Miller et al.
(2008) that was used to construct the operating model in this
study ranged from 1977 to 2005 and included ages 3–10+ in the age
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composition. Commercial fishery data included total fishery yield
for all years from 1977 to 2005, fishery yield from the northwest
region for the A season (1977–1987, 1991–1996, and 1998–2004) and
B season (1977–1987, 1991–2004), and fishery yield from the south-
east region for the A and B seasons (both for years 1977–1987,
1991–2004). Fishery-independent indices of abundance included
the Alaska Fisheries Science Center (AFSC) bottom trawl sur-
vey (BTS) biomass estimates from 1982 to 2004 and the AFSC
echo-integration trawl (EIT) survey in the years 1994, 1996–1997,
1999–2000, and 2002. Age composition data were included for
each year of the regional and seasonal commercial fishery catch,
BTS, and EIT. A hypothetical tagging program was implemented
in the operatingmodel and followed the approach in Hulson et al.
(2011). Onemain difference between the current study andHulson
et al. (2011) was that the simulated tags were released for the last
10 years of the time series rather than the last 3 years.

Error in catch and index data for the commercial fishery, BTS,
and EIT was generated using the log-normal distribution. Com-
mercial fishery yield in the northwest and southeast regions for
the A and B fishing seasons were generated with a standard devi-
ation (SD) of 0.05, and regional BTS and EIT biomass datasets were
generated with a SD of 0.2 following Hulson et al. (2011). Spatially
aggregated index data were obtained by summing the untrans-
formed generated regional index data. To compute the distribu-
tion of the sum of untransformed log-normal random variables
the Fenton and Wilkinson approximation method was used (Gao
et al. 2009). This method provided approximate SDs with means
over time of 0.14, 0.15 for the EIT biomass, 0.04 for the A and B
season catch biomass, and for the total catch biomass a mean SD
of 0.03.

Age composition datasets for the commercial fishery, BTS, and
EIT were generated assuming the multinomial distributions. For
each year of the regional and seasonal fishery age composition,
regional BTS age composition, and regional EIT age composition,
multinomial error was generated based on the age composition
from the operatingmodel and an assumed sample size of 200. The
sample size of 200 is far smaller than the actual sample sizes
collected for EBS pollock but represents the approximate level of
overdispersion and uncertainty in the age composition (e.g.,
McAllister and Ianelli 1997). The spatially aggregated age compo-
sition was obtained by summing the generated multinomial sam-
ples from the regional age compositions.

Recovery tagging data were generated with the Poisson distri-
bution. Following previous research into the feasibility of tagging
EBS pollock, 10 000 tags were released in the simulation during
the BTS (Miller 2007). In Hulson et al. (2011) it was found that
uncertainty was reduced when releasing tags evenly across the
two regions. Thus, in this study tags were released uniformly by
age and region. In this case, tagging uniformly across agesmimics
a length-stratified sampling design in which the same number of
tags would be released across length bins. For simplicity, the num-
bers of tags released by age were assumed known. Tag recoveries
occurred during fishing and were generated with the Poisson dis-
tribution. The proportion of total catch that was examined for
tags was set at 7% for the northwest region and 39% for the south-
east region and was based on the proportion of catch that was
landed to shoreside processors (Miller 2007). Thus, the generated
total number of tags caught in the commercial fishery was multi-
plied by the proportion of catch delivered to shoreside processors
in each region to obtain the tag recovery datasets.

For each operatingmodel case, catch biomass, survey index, age
composition, and tag recovery datasets were generated 1000 times
(Efron and Tibshirani 1993) using R (R Development Core Team
2008).

Estimation models
In the third step of the simulation analysis, estimation model

scenarios were constructed that integrated the datasets generated

in the second step. We evaluated two estimation models in this
study: a spatially aggregated ASA model and a spatially explicit
ASA model. In total there were 10 estimation model scenarios
considered in this study; four for the spatially aggregated ASA
model and six for the spatially explicit ASA model (notation and
description of estimation model scenarios is provided in Table 1).
The spatially aggregated model is similar in structure to the cur-
rent ASA model used to manage EBS pollock (Ianelli et al. 2011b).
The spatially aggregated model used in this study and the current
assessment model both model the EBS pollock population as a
whole, rather than regionally disaggregated datasets. The primary
differences between the spatially aggregated estimation model
used in this study and the current assessment used for EBS pollock
are in the time-dependent parameterizations of parameters. The
spatially explicit model integrated tagging data as in Hulson et al.
(2011) and was based on the Integrated Tagging and Catch-at-Age
Analysis (ITCAAN) model after Maunder (2001) and estimated
movement between the northwest and southeast regions of the
EBS.

Fundamentally, the spatially aggregated and spatially explicit
models are the same; both use the same underlying theory to
describe the population dynamics and the same statistical distri-
butions to fit the datasets. The only difference between the mod-
els is the expansion of the population dynamics to include
movement estimation in the spatially explicit model by estimat-
ing movement parameters that are supported through the use of
spatially disaggregated datasets and tagging data. In the spatially
aggregated and spatially explicit models, the half-year time steps
are the same, and fishing mortality and half of natural mortality
are applied after the A and B fishing seasons (winter and summer).
The difference between the spatially aggregated and spatially ex-
plicit models in this regard is that movement occurs in the spa-
tially explicitmodel coincident with the half-year time steps. Both
the spatially aggregated and spatially explicit ASA estimation
models used the log-normal distribution for index and catch bio-
mass datasets, the multinomial distribution for the age composi-
tion datasets, and the Poisson distribution for the tag recovery
datasets to obtain the maximum likelihood estimates of the esti-
mated parameters.

Four estimation model scenarios were evaluated with the spa-
tially aggregated model (A1–A3b, where “A” stands for spatially
aggregated in the notation of estimation model scenarios;
Table 1). Within the spatially aggregated estimationmodel scenar-
ios we tested the treatment of the age composition likelihood
(A1 and A2), the treatment of time-dependent fishing selectivity
(A3a and A3b), and the inclusion of spatially aggregated tagging
data (A3a and A3b, where “a” denotes not including tagging data
and “b” denotes including tagging data).

Six estimation model scenarios were evaluated with the spa-
tially explicit ASA (E0a–E4, where “E” stands for spatially explicit
in the notation of estimationmodel scenarios; Table 1).With these
model scenarios we tested the inclusion of spatially disaggregated
tagging data (E0a and E0b); the misspecification of ontogenetic
(age-dependent) or climate change (time-dependent) influences
on movement (E1 and E2, in which we defined misspecified as
constant and set at 1 over age or time when it varies in the oper-
ating model); estimating rather than setting ontogenetic and cli-
mate change parameters with the functional form known (E3);
and estimating age- and time-dependent movement with a ran-
dom walk (E4; e.g., as in Wilberg and Bence 2006). To reduce the
number of parameters for such random walk processes under
estimation model scenario E4, we assumed that the relative an-
nual changes in the parameters would have a similar relationship
with climate change. We applied a single time series of annual
deviations to the regional and seasonal movement parameters
and ontogenetic parameters with a scaled random walk, given by
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(8) �R,S,y�1 � �R,S,y � �y × �R,S,y�0

where �R,S,y was the logit-transformed movement parameter,
�y was the shared annual estimated deviation in movement, and
�R,S,y=0 was the initial movement parameter estimate.

Model performance
In the fourth and final step of this analysis, results from the

estimation model scenarios were compared to the “known” pop-
ulation structure from the operating model cases. Estimation
model performance among the scenarios focused on representing
bias and uncertainty in biomass (both total and regional) in the
final year and estimated movement and ontogenetic parameters
(for the spatially explicit estimation models). For brevity of re-
sults, biomass in the last year of the model was selected for pre-
sentation rather than the full time series, because it is the most
critical year from which forecasts and harvest recommendations
are used formanagement. The rootmean squared error (RMSE) for
these outputs was presented to quantify both bias and uncer-
tainty. Boxplots were used to show estimation results from the
simulated operating model scenarios. These readily allow
comparisons of median, interquartile ranges, and 95th percen-

tiles. Estimates were considered significantly biased if the “true”
operating model value fell outside the 95th percentiles from the
estimation model.

Some estimation model scenario and operating model combi-
nations were omitted from presentation. For operating model
case O0 (static spatial population), estimation model scenarios E1
and E2 were equivalent to E0. Similarly, estimation models sce-
narios E0a, E0b, and E2 were omitted for operating model case O1
because the functional forms of ontogenetic movement or cli-
mate change influences were absent. Finally, operating model
case O2 estimation model scenario E2 was omitted because cli-
mate change influences in this operating model case were absent.

Results
The total biomass of EBS pollock were similar for operating

model cases O0–O2 and decreased in operating model cases O3
and O4 at the end of the time series as the number of years
increased in which climate change affected movement and re-
cruitment (top panel, Fig. 2). The spatial distribution of biomass in
the operatingmodel resulted in a small increase in biomass in the
northwest region (middle panel, Fig. 2) and a large decrease in
biomass in the southeast region (bottompanel, Fig. 2) in operating

Fig. 2. Total, northwest (NW), and southeast (SE) biomass (t) for operating model cases O0–O4.
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model cases O3 and O4 compared with operatingmodel cases O0–
O2. The shift of biomass from the southeast to northwest regions
of the EBS in operating model cases O3 and O4 represent cases
across a continuum of possible climate effects on spatial distribu-
tion, one extreme (O4) and one more moderate (O3). While the
extreme case (O4) may shift distribution abruptly, these cases
were considered to evaluate both spatially aggregated and spa-
tially explicit model performance under different levels of cli-
mate change impacts. An interesting result of the operating
model was that spatially summed fishingmortality at age showed
a dome-shaped pattern for operating model cases O1–O4 (Fig. 3,
top panels). Alternatively, when regional differences in fishing
mortality at age were small, the aggregated fishing mortality at
age was asymptotic and similar to the regional fishing mortalities
(Fig. 3, bottom panels).

In general, most of the estimation models resulted in unbiased
estimates of total biomass in the final year across the operating

model cases (Fig. 4). The exceptions in which bias in the final
year's total biomass occurred was estimationmodel scenario E1 in
case O1, estimation model scenarios E1 and E2 in case O3, and
estimationmodel scenario E2 in case O4. Bias in regional biomass
occurred for estimationmodel scenarios E1, E3, and E4 in case O1,
estimation model scenarios E1 and E2 in case O3, and estimation
model scenario E2 in case O4. Total biomass estimates from esti-
mation model scenarios A1 and A2 were unbiased across the op-
erating model cases (with the exception of case O4). However,
there were differences when comparing the median value from
estimation model scenarios A1 and A2 to the true value from the
operating model in cases O2–O4. The positive difference in esti-
mation model scenarios A1 and A2 became larger as the magni-
tude of climate change increased. The difference between the
median and true value was smaller for estimation model sce-
nario A2 compared with A1 for all operating model cases.

Fig. 3. A and B season fishing mortality at age from the operating model cases for years with large and small differences between the
northwest (NW) and southeast (SE) regional fishing mortality.
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When bias resulted in the final year's biomass for operating
model cases O3 and O4 from the spatially explicit model scenar-
ios, bias also resulted in the estimated probability of movement
(Fig. 5). Additionally, bias in the probability of movement oc-
curred for scenario E1 in case O4, even though bias did not occur
in the final year's biomass. The estimated probability of move-
ment resulted in large uncertainty for scenario E1 in case O2, in
some cases ranging from 0 to 1, or nearly so. For case O1, in which
movement between regions was random, the estimated probabil-
ity of movement was either 1 with low uncertainty or not equal to
1 with large uncertainty. For scenarios E3 and E4, the probability
of movement by age (NWQS) for both the A and B seasons was
unbiased for operating model cases O0 and O2–O3. Further, the
time-dependent movement and ontogenetic parameter estimates
were unbiased for the scaled random walk estimation model
scenario E4 (Fig. 6; probability of staying in the northwest region
after the B season is shown as an example).

For all operating model cases the largest RMSE in total and
regional biomass in the final year resulted from the estimation

model scenarios that did not include tagging data and scenarios
that resulted in bias (Fig. 7). Estimation models that included
tagging data and were unbiased in the final year's biomass re-
sulted in small RMSE of similar magnitude. For example, across
the operatingmodel cases the RMSE in the final year's biomass for
estimation model scenario A3b was similar to scenarios E0b–E4
(with the exception of scenarios E0b–E4 that resulted in bias).
Alternatively, the magnitude of RMSE in the final year's biomass
was similar for estimation models without tagging data. When
comparing between model scenarios A3a and E0a, and A3b and
E0b, for all of the operating model cases the RMSE in the final
year's biomass was smaller for the spatially explicit model sce-
nario (E0a and E0b) comparedwith the spatially aggregatedmodel
scenario (A3a and A3b).

When tagging data were included in the estimation model sce-
narios the uncertainty in the fishing mortality parameters and
survey catchability parameters decreased (Figs. 8 and 9). For all
operating model cases, the coefficient of variation (CV) in fishing
mortality for scenarios A3b and E0b was smaller than scenar-

Fig. 4. Total and regional biomass estimated in the final year from the estimation model scenarios. The horizontal dashed lines are the true
values from the operating model, and “NE” stands for estimation model scenarios that were not estimated in the specific operating model
case.
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ios A3a and E0a (Fig. 8, shown for operating model case O0 as an
example). For both scenarios A3b and E0b, the CVs for the fishing
mortality parameters were similar to those from A3a and E0a at
the beginning of the time series, but became smaller later in the
time series. Additionally, the CVs in the survey catchability pa-
rameters (both BTS and EIT) decreased when tagging data were
included in the estimation model scenarios. Across operating
model cases O0–O4, the CV in catchability from model scenar-
ios A3b and E0b was smaller than that in scenarios A3a and E0a
(Fig. 9). The largest reduction in parameter uncertainty in scenar-
ios A3b and E0b compared with A3a and E0a was in the fishing
mortality and catchability parameters; uncertainty in other
parameters was similar when comparing these scenarios (results
not shown).

Discussion
In this study we have illustrated cases in which a spatially ex-

plicit ASAmodel that includesmovement in population dynamics

is both superior and inferior to the commonly used spatially ag-
gregated ASA model. In particular, when movement was random
between regions, spatially aggregated model scenarios produced
unbiased total biomass estimates, but spatially explicit model sce-
narios produced biased total and regional biomass estimates
and highly uncertain movement parameters. Alternatively, there
were several spatially explicit models that produced unbiased es-
timates of total and regional biomass under climate-forcing sce-
narios, while spatially aggregated estimationmodels were biased.
Specifically, the spatially aggregated estimation model with con-
stant fishing selectivity over time failed to account for differences
in age-specific full-recruitment fishing mortality between areas
and (or) gears. In general, the primary advantage shown in this
analysis of a spatially explicit ASA model compared with a spa-
tially aggregated ASA model is the potential reduction of uncer-
tainty in biomass estimates.

For each of the operatingmodel cases investigated in this study,
the resulting error in model estimates was larger in the spatially

Fig. 5. Probability of staying in region R and season S (R¡RPS) and probability of ontogenetic movement (NWQS) estimated by the spatially
explicit estimation model scenarios. The horizontal dashed lines are the true values from the operating model (omitted for case O1, as
movement was random), and “NE” stands for estimation model scenarios that were not estimated in the specific operating model case.
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aggregated estimationmodel scenarios comparedwith that in the
spatially explicit estimation model scenarios. This general result
is somewhat surprising because of the larger annual sample sizes
in the aggregated data compared with sizes in the spatially ex-
plicit data; the variance in the datasets fitted by the spatially
aggregated model was smaller than the variance in the datasets
fitted by the spatially explicit model. We discovered that the pri-
mary reasons for reduced uncertainty in the spatially explicit
estimation model scenarios was because of a better accounting of
underlying processes (e.g., changes in parameter values over time
or space). However, the inclusion of tagging data in both the spa-
tially aggregated and spatially explicit estimation models greatly
reduced uncertainty.

This resulting reduction of uncertainty in the estimationmodel
scenarios using tagging data was due to a gain in precision of the
fully recruited fishingmortality parameter estimates. This gain in

precision occurred in the fishing mortality for both the spatially
aggregated and spatially explicit estimation model scenarios. As
might be expected, reduced uncertainty in the fishing mortality
rates was accompanied by increased precision of the catchability
parameters for the survey indices (because fishing rate estimation
precision is correlated with precision in abundance estimates).
Further, the addition of tagging data had little effect on the un-
certainty in the movement parameters in the spatially explicit
estimation model. While the spatially explicit estimation model
did have lower uncertainty than the aggregated model, when tag-
ging data were included in the spatially aggregated model the
uncertainty in biomass and parameters were comparable to the
uncertainty from the more complex spatially explicit estimation
model.

Causes of process error in spatially aggregated datasets can in-
clude time-varying changes in the spatial distribution of the pop-

Fig. 6. Movement (NW¡NWPB) and ontogenetic (NWQB) time-dependent parameter estimates from estimation model E4. Parameters for the
northwest (NW) region after the B fishing season are shown as an example; the dashed lines are the values from the operating model
(omitted for case O1, as movement was random).
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ulation, fishing gear selectivity, and full-recruitment fishing
mortality (Sampson and Scott 2011). In this study, the operating
model was specified to have the same fishery selectivity between
areas over time; however, there were spatial differences in the
annual distribution of the population and full-recruitment fishing
mortality. The effect of aggregating catch data across regions
(catch biomass and catch-at-age) resulted in fishing mortality that
varied by both time and age. Sampson and Scott (2011) noted in a
similar situation that fishing mortality with increasing age can
become dome-shaped and vary over time. In this study, after aggre-
gating spatially explicit catch data, dome-shaped and time-varying
fishingmortality alsooccurredand furtherdidnotnecessarily follow
easily parameterized functional forms.

The spatially aggregated models with constant selectivity over
time failed to account for this type of process error. This resulted
in larger errors when compared with the spatially explicit model
and also caused small biases. Two estimation scenarios tested in
this study reduced bias. In the first it was shown that use of the
Dirichlet to estimate the effective sample size for the age compo-
sition data reduced bias in the spatially aggregated model. This

was because the aggregated fishing mortality rates across ages
induced overdispersion in the fishery age composition data when
constant selectivity over time was assumed in the estimation
model. However, the problemof assuming constant and separable
selectivity remained. The second scenario estimated nonparamet-
ric selectivity that was time dependent, resulting in the ability to
correctly estimate the true underlying aggregated fishing mortal-
ity from the operating model. Comparing the two alternatives,
when movement was constant, random, or did not have climate
change effects, estimating effective sample size performed just as
well and better in some cases than nonparametric selectivity in
terms of RMSE in biomass. Although, when climate change in-
duced a distributional shift, the RMSE in biomass fromnonparam-
eteric selectivity was smaller than when estimating effective
sample size. Such a pattern would support the approach used in
the Ianelli et al. (2011b) assessment, which estimates nonparam-
eteric and time-varying selectivity.

When bias in estimates of total and regional biomass was pres-
ent in the spatially explicit ASA model, it occurred when move-
ment between regionswas random andwhen the ontogenetic and

Fig. 7. Root mean squared error (RMSE) in total and regional biomass estimated in the final year from the estimation model scenarios.
“NE” stands for estimation model scenarios that were not estimated in the specific operating model case.
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climate change parameters were misspecified. The biased bio-
mass in both estimation model scenarios (E1 and E2) was due to
the failure of the model to detect a northward shift in the popu-
lation. In performing stock assessment this bias could be identi-
fied through the fit to regional index data (i.e., catch or survey
biomass), as the fit to each region's index data degraded as climate
change forcing shifted the population northward. In terms of
management, bias in total and regional biomass would result in
suboptimal spatial allocation of catch with overexploitation in
one region and underexploitation in the other. If ontogenetic
effects are unknown, bias in stock assessment and incorrect man-
agement actions could result (Lindeman et al. 2000). We extend
this concept by showing that the same is true for climate change
forcing, and the bias when time-dependent changes inmovement
are unaccounted for can be greater than misspecifying ontoge-
netic movement. We have shown that if ontogenetic movement
or climate change effects causing time-dependent movement are

misspecified, a spatially explicit model might provide little bene-
fit over simpler spatially aggregated models.

With the addition of tagging data in the spatially explicit mod-
els (including the randomwalk estimationmodel), it was possible
to estimate time-dependent changes in ontogenetic movement.
Random walks have often been used to estimate time-dependent
deviations in parameter estimates (e.g., Wilberg and Bence 2006).
However, a drawback of this approach is the potential for the
number of parameters estimated to increase considerably. For
example, there would be an increase of Y – 1 parameters (where Y
is the total number of years modeled) if a random walk is applied
to estimate time-dependent deviations in a given parameter; the
same reasoning would apply if estimating parameter deviations
by age, sex, region, etc. In this study we found that a scaled ran-
dom walk could be used to reduce the number of parameters
estimated where a single vector of shared annual deviations was
estimated and applied to a number of parameters by multiplying

Fig. 8. Coefficient of variation in fishing mortality from estimation model scenarios A3a and A3b (combined region F) and E0a and E0b (NW
and SE region F) for the A and B fishing seasons.
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the shared deviation by the parameter's initial value estimate.
However, this requires a strong and possibly incorrect assump-
tion that whatever the mechanism (e.g., temperature, food avail-
ability, etc.) causing time-dependent changes, it would affect each
parameter similarly.

There were a number of simplifying assumptions made in spec-
ifying the operating and estimation models used in this study.
One simplifying assumption in this study was that the spatial
scale used in the operating model was the same as the estimation
models (where relevant). An operating model with finer spatial
scales than the estimation model is likely to result in increased
errors in full-recruitment fishing mortality estimates. Another
simplifying assumption was that in the estimation models that
included tagging data, the age at the time of release was assumed
to be known, which would not be the case in real-world applica-
tions. Further, catchability and survey selectivity were assumed to
be time-invariant. The limitations of a spatially explicit ASA
model in real-world situations would depend on the amount and
quality of available spatially explicit data.

Both the spatially aggregated and spatially explicit ASA models
have drawbacks and advantages (e.g., Quinn and Collie 2005). A
primary drawback of the spatially aggregated model is the inabil-
ity to estimate regional biomass. In terms of management, it
could become difficult to properly manage fishing effort with a
spatially aggregated model if climate change were to induce a
northward shift in fish populations (Cheung et al. 2009). An ad-
vantage of a spatially aggregated ASA model is that accurate esti-
mation of total biomass can be obtained without having to know
or parameterize ontogenetic or climate change parameters for
movement. A drawback of the spatially explicit model is potential
model specification error when considering ontogenetic (Elsdon
and Gillanders 2003) or climate change effects on movement or
recruitment. Further, a limitation of implementing spatially ex-
plicit ASAmodels is themagnitude of the regional sample sizes in
the datasets (e.g., population index data and age composition).
Often, sample sizes within regions are too small to support reli-
able estimation using a spatially explicit model. Thus, reduction
of uncertainty in estimates of biomass through the use of a spa-

Fig. 9. Coefficient of variation in catchability of the bottom trawl survey (BTS) and echo-integration trawl survey (EIT) from estimation model
scenarios A3a, A3b, E0a, and E0b.
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tially explicit model in this case is unlikely. When data are ade-
quate, advantages of the spatially explicit model include the
ability to estimate regional biomass and may lead to increased
precision in total biomass. Management implications would be-
come more important given recent work on accounting for
uncertainty when setting harvest recommendations (e.g., National
Research Council 1998; Prager and Shertzer 2010).

We have shown that under certain circumstances a spatially
explicit ASA model provides the ability to identify potential ef-
fects on fish population dynamics by climate change and adjust
management of commercial fisheries based on changes in the
spatial distribution of fish species. We also have shown cases in
which a spatially explicit model fails to provide improvements
over a spatially aggregated model, in particular when movement
is random and when ontogenetic or time-dependent changes in
movement are incorrectly specified. As an intermediate step to
ecosystem-based fisheries management, we recommend that spa-
tially explicit models continue to be developed and that tagging
programs be implemented. Tag recovery data would help identify
changes in fish spatial distribution due to climate change and also
better estimate fishing mortality at a finer scale. With the addi-
tion of tagging data, the reduced uncertainty in both a spatially
aggregated and spatially explicit models would better inform
management decisions on size and allocation of catch quotas,
even if the spatial distribution were affected by climate change.
Further, with proposed methods to incorporate uncertainty in
harvest recommendations (i.e., Prager and Shertzer 2010), the
larger uncertainty in amodelwithout tagging datawould result in
catch limits that are smaller than the ones obtained from a more
precise model that included tagging data. Using this type of
method to derive catch limits could potentially offset some costs
associatedwith implementing tagging programs that aid in reduc-
ing uncertainty in stock assessment models.
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